Invariant Means and the Structure of Inner Amenable Groups
نویسنده
چکیده
We study actions of countable discrete groups which are amenable in the sense that there exists a mean on X which is invariant under the action of G. Assuming that G is nonamenable, we obtain structural results for the stabilizer subgroups of amenable actions which allow us to relate the first `-Betti number of G with that of the stabilizer subgroups. An analogous relationship is also shown to hold for cost. This relationship becomes even more pronounced for transitive amenable actions, leading to a simple criterion for vanishing of the first `-Betti number and triviality of cost. Moreover, for any marked finitely generated nonamenable group G we establish a uniform isoperimetric threshold for Schreier graphs G/H of G, beyond which the group H is necessarily weakly normal in G. Even more can be said in the particular case of an atomless mean for the conjugation action – that is, when G is inner amenable. We show that inner amenable groups have cost 1 and moreover they have fixed price. We establish Ufin-cocycle superrigidity for the Bernoulli shift of any nonamenable inner amenable group. In addition, we provide a concrete structure theorem for inner amenable linear groups over an arbitrary field. We also completely characterize linear groups which are stable in the sense of Jones and Schmidt. Our analysis of stability leads to many new examples of stable groups; notably, all nontrivial countable subgroups of the group H(R), recently studied by Monod, are stable. This includes nonamenable groups constructed by Monod and by Lodha and Moore, as well as Thompson’s group F .
منابع مشابه
Characterizations of amenable hypergroups
Let $K$ be a locally compact hypergroup with left Haar measure and let $L^1(K)$ be the complex Lebesgue space associated with it. Let $L^infty(K)$ be the dual of $L^1(K)$. The purpose of this paper is to present some necessary and sufficient conditions for $L^infty(K)^*$ to have a topologically left invariant mean. Some characterizations of amenable hypergroups are given.
متن کاملA CHARACTERIZATION OF EXTREMELY AMENABLE SEMIGROUPS
Let S be a discrete semigroup, m (S) the space of all bounded real functions on S with the usualsupremum norm. Let Acm (S) be a uniformly closed left invariant subalgebra of m (S) with 1 c A. We say that A is extremely left amenable if there isamultiplicative left invariant meanon A. Let P = {h ?A: h =|g-1,g | forsome g ?A, s ?S}. It isshown that . A is extremely left amenable if and only ...
متن کاملSemi-amenability and Connes Semi-amenability of Banach Algebras
Let A be a Banach algebra and X a Banach A-bimodule, the derivation D : A → X is semi-inner if there are ξ, μ ∈ X such that D(a) = a.ξ − μ.a, (a ∈ A). A is called semi-amenable if every derivation D : A → X∗ is semi-inner. The dual Banach algebra A is Connes semi-amenable (resp. approximately semi-amenable) if, every D ∈ Z1w _ (A,X), for each normal, dual Banach A-bimodule X, is semi -inner (re...
متن کامل